Copied to
clipboard

G = C22×D10⋊C4order 320 = 26·5

Direct product of C22 and D10⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×D10⋊C4, C23.64D20, C24.78D10, (C23×C4)⋊2D5, (C23×C20)⋊3C2, (C2×C20)⋊12C23, (C23×D5)⋊10C4, D108(C22×C4), (C22×C4)⋊41D10, (D5×C24).3C2, C23.69(C4×D5), C2.3(C22×D20), C10.59(C23×C4), (C23×Dic5)⋊6C2, (C2×Dic5)⋊8C23, C22.76(C2×D20), (C2×C10).285C24, (C22×C20)⋊55C22, C10.131(C22×D4), (C22×C10).204D4, C22.42(C23×D5), C23.103(C5⋊D4), C23.335(C22×D5), (C23×C10).107C22, (C22×C10).414C23, (C22×Dic5)⋊46C22, (C23×D5).123C22, (C22×D5).246C23, C103(C2×C22⋊C4), C53(C22×C22⋊C4), C22.79(C2×C4×D5), C2.38(D5×C22×C4), (C2×C4)⋊10(C22×D5), (C2×C10)⋊9(C22⋊C4), C2.2(C22×C5⋊D4), (C2×C10).572(C2×D4), (C22×D5)⋊20(C2×C4), C22.101(C2×C5⋊D4), (C2×C10).259(C22×C4), (C22×C10).173(C2×C4), SmallGroup(320,1459)

Series: Derived Chief Lower central Upper central

C1C10 — C22×D10⋊C4
C1C5C10C2×C10C22×D5C23×D5D5×C24 — C22×D10⋊C4
C5C10 — C22×D10⋊C4
C1C24C23×C4

Generators and relations for C22×D10⋊C4
 G = < a,b,c,d,e | a2=b2=c10=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec, ede-1=c5d >

Subgroups: 2558 in 674 conjugacy classes, 247 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C22⋊C4, C22×C4, C22×C4, C24, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C22⋊C4, C23×C4, C23×C4, C25, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C22×C22⋊C4, D10⋊C4, C22×Dic5, C22×Dic5, C22×C20, C22×C20, C23×D5, C23×D5, C23×C10, C2×D10⋊C4, C23×Dic5, C23×C20, D5×C24, C22×D10⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C24, D10, C2×C22⋊C4, C23×C4, C22×D4, C4×D5, D20, C5⋊D4, C22×D5, C22×C22⋊C4, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, C23×D5, C2×D10⋊C4, D5×C22×C4, C22×D20, C22×C5⋊D4, C22×D10⋊C4

Smallest permutation representation of C22×D10⋊C4
On 160 points
Generators in S160
(1 92)(2 93)(3 94)(4 95)(5 96)(6 97)(7 98)(8 99)(9 100)(10 91)(11 86)(12 87)(13 88)(14 89)(15 90)(16 81)(17 82)(18 83)(19 84)(20 85)(21 116)(22 117)(23 118)(24 119)(25 120)(26 111)(27 112)(28 113)(29 114)(30 115)(31 106)(32 107)(33 108)(34 109)(35 110)(36 101)(37 102)(38 103)(39 104)(40 105)(41 136)(42 137)(43 138)(44 139)(45 140)(46 131)(47 132)(48 133)(49 134)(50 135)(51 126)(52 127)(53 128)(54 129)(55 130)(56 121)(57 122)(58 123)(59 124)(60 125)(61 156)(62 157)(63 158)(64 159)(65 160)(66 151)(67 152)(68 153)(69 154)(70 155)(71 146)(72 147)(73 148)(74 149)(75 150)(76 141)(77 142)(78 143)(79 144)(80 145)
(1 57)(2 58)(3 59)(4 60)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(81 131)(82 132)(83 133)(84 134)(85 135)(86 136)(87 137)(88 138)(89 139)(90 140)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)(97 127)(98 128)(99 129)(100 130)(101 151)(102 152)(103 153)(104 154)(105 155)(106 156)(107 157)(108 158)(109 159)(110 160)(111 141)(112 142)(113 143)(114 144)(115 145)(116 146)(117 147)(118 148)(119 149)(120 150)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 56)(2 55)(3 54)(4 53)(5 52)(6 51)(7 60)(8 59)(9 58)(10 57)(11 42)(12 41)(13 50)(14 49)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 77)(22 76)(23 75)(24 74)(25 73)(26 72)(27 71)(28 80)(29 79)(30 78)(31 67)(32 66)(33 65)(34 64)(35 63)(36 62)(37 61)(38 70)(39 69)(40 68)(81 132)(82 131)(83 140)(84 139)(85 138)(86 137)(87 136)(88 135)(89 134)(90 133)(91 122)(92 121)(93 130)(94 129)(95 128)(96 127)(97 126)(98 125)(99 124)(100 123)(101 157)(102 156)(103 155)(104 154)(105 153)(106 152)(107 151)(108 160)(109 159)(110 158)(111 147)(112 146)(113 145)(114 144)(115 143)(116 142)(117 141)(118 150)(119 149)(120 148)
(1 157 17 147)(2 158 18 148)(3 159 19 149)(4 160 20 150)(5 151 11 141)(6 152 12 142)(7 153 13 143)(8 154 14 144)(9 155 15 145)(10 156 16 146)(21 121 31 131)(22 122 32 132)(23 123 33 133)(24 124 34 134)(25 125 35 135)(26 126 36 136)(27 127 37 137)(28 128 38 138)(29 129 39 139)(30 130 40 140)(41 111 51 101)(42 112 52 102)(43 113 53 103)(44 114 54 104)(45 115 55 105)(46 116 56 106)(47 117 57 107)(48 118 58 108)(49 119 59 109)(50 120 60 110)(61 81 71 91)(62 82 72 92)(63 83 73 93)(64 84 74 94)(65 85 75 95)(66 86 76 96)(67 87 77 97)(68 88 78 98)(69 89 79 99)(70 90 80 100)

G:=sub<Sym(160)| (1,92)(2,93)(3,94)(4,95)(5,96)(6,97)(7,98)(8,99)(9,100)(10,91)(11,86)(12,87)(13,88)(14,89)(15,90)(16,81)(17,82)(18,83)(19,84)(20,85)(21,116)(22,117)(23,118)(24,119)(25,120)(26,111)(27,112)(28,113)(29,114)(30,115)(31,106)(32,107)(33,108)(34,109)(35,110)(36,101)(37,102)(38,103)(39,104)(40,105)(41,136)(42,137)(43,138)(44,139)(45,140)(46,131)(47,132)(48,133)(49,134)(50,135)(51,126)(52,127)(53,128)(54,129)(55,130)(56,121)(57,122)(58,123)(59,124)(60,125)(61,156)(62,157)(63,158)(64,159)(65,160)(66,151)(67,152)(68,153)(69,154)(70,155)(71,146)(72,147)(73,148)(74,149)(75,150)(76,141)(77,142)(78,143)(79,144)(80,145), (1,57)(2,58)(3,59)(4,60)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,127)(98,128)(99,129)(100,130)(101,151)(102,152)(103,153)(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,60)(8,59)(9,58)(10,57)(11,42)(12,41)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,77)(22,76)(23,75)(24,74)(25,73)(26,72)(27,71)(28,80)(29,79)(30,78)(31,67)(32,66)(33,65)(34,64)(35,63)(36,62)(37,61)(38,70)(39,69)(40,68)(81,132)(82,131)(83,140)(84,139)(85,138)(86,137)(87,136)(88,135)(89,134)(90,133)(91,122)(92,121)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(101,157)(102,156)(103,155)(104,154)(105,153)(106,152)(107,151)(108,160)(109,159)(110,158)(111,147)(112,146)(113,145)(114,144)(115,143)(116,142)(117,141)(118,150)(119,149)(120,148), (1,157,17,147)(2,158,18,148)(3,159,19,149)(4,160,20,150)(5,151,11,141)(6,152,12,142)(7,153,13,143)(8,154,14,144)(9,155,15,145)(10,156,16,146)(21,121,31,131)(22,122,32,132)(23,123,33,133)(24,124,34,134)(25,125,35,135)(26,126,36,136)(27,127,37,137)(28,128,38,138)(29,129,39,139)(30,130,40,140)(41,111,51,101)(42,112,52,102)(43,113,53,103)(44,114,54,104)(45,115,55,105)(46,116,56,106)(47,117,57,107)(48,118,58,108)(49,119,59,109)(50,120,60,110)(61,81,71,91)(62,82,72,92)(63,83,73,93)(64,84,74,94)(65,85,75,95)(66,86,76,96)(67,87,77,97)(68,88,78,98)(69,89,79,99)(70,90,80,100)>;

G:=Group( (1,92)(2,93)(3,94)(4,95)(5,96)(6,97)(7,98)(8,99)(9,100)(10,91)(11,86)(12,87)(13,88)(14,89)(15,90)(16,81)(17,82)(18,83)(19,84)(20,85)(21,116)(22,117)(23,118)(24,119)(25,120)(26,111)(27,112)(28,113)(29,114)(30,115)(31,106)(32,107)(33,108)(34,109)(35,110)(36,101)(37,102)(38,103)(39,104)(40,105)(41,136)(42,137)(43,138)(44,139)(45,140)(46,131)(47,132)(48,133)(49,134)(50,135)(51,126)(52,127)(53,128)(54,129)(55,130)(56,121)(57,122)(58,123)(59,124)(60,125)(61,156)(62,157)(63,158)(64,159)(65,160)(66,151)(67,152)(68,153)(69,154)(70,155)(71,146)(72,147)(73,148)(74,149)(75,150)(76,141)(77,142)(78,143)(79,144)(80,145), (1,57)(2,58)(3,59)(4,60)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,127)(98,128)(99,129)(100,130)(101,151)(102,152)(103,153)(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,60)(8,59)(9,58)(10,57)(11,42)(12,41)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,77)(22,76)(23,75)(24,74)(25,73)(26,72)(27,71)(28,80)(29,79)(30,78)(31,67)(32,66)(33,65)(34,64)(35,63)(36,62)(37,61)(38,70)(39,69)(40,68)(81,132)(82,131)(83,140)(84,139)(85,138)(86,137)(87,136)(88,135)(89,134)(90,133)(91,122)(92,121)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(101,157)(102,156)(103,155)(104,154)(105,153)(106,152)(107,151)(108,160)(109,159)(110,158)(111,147)(112,146)(113,145)(114,144)(115,143)(116,142)(117,141)(118,150)(119,149)(120,148), (1,157,17,147)(2,158,18,148)(3,159,19,149)(4,160,20,150)(5,151,11,141)(6,152,12,142)(7,153,13,143)(8,154,14,144)(9,155,15,145)(10,156,16,146)(21,121,31,131)(22,122,32,132)(23,123,33,133)(24,124,34,134)(25,125,35,135)(26,126,36,136)(27,127,37,137)(28,128,38,138)(29,129,39,139)(30,130,40,140)(41,111,51,101)(42,112,52,102)(43,113,53,103)(44,114,54,104)(45,115,55,105)(46,116,56,106)(47,117,57,107)(48,118,58,108)(49,119,59,109)(50,120,60,110)(61,81,71,91)(62,82,72,92)(63,83,73,93)(64,84,74,94)(65,85,75,95)(66,86,76,96)(67,87,77,97)(68,88,78,98)(69,89,79,99)(70,90,80,100) );

G=PermutationGroup([[(1,92),(2,93),(3,94),(4,95),(5,96),(6,97),(7,98),(8,99),(9,100),(10,91),(11,86),(12,87),(13,88),(14,89),(15,90),(16,81),(17,82),(18,83),(19,84),(20,85),(21,116),(22,117),(23,118),(24,119),(25,120),(26,111),(27,112),(28,113),(29,114),(30,115),(31,106),(32,107),(33,108),(34,109),(35,110),(36,101),(37,102),(38,103),(39,104),(40,105),(41,136),(42,137),(43,138),(44,139),(45,140),(46,131),(47,132),(48,133),(49,134),(50,135),(51,126),(52,127),(53,128),(54,129),(55,130),(56,121),(57,122),(58,123),(59,124),(60,125),(61,156),(62,157),(63,158),(64,159),(65,160),(66,151),(67,152),(68,153),(69,154),(70,155),(71,146),(72,147),(73,148),(74,149),(75,150),(76,141),(77,142),(78,143),(79,144),(80,145)], [(1,57),(2,58),(3,59),(4,60),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(81,131),(82,132),(83,133),(84,134),(85,135),(86,136),(87,137),(88,138),(89,139),(90,140),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126),(97,127),(98,128),(99,129),(100,130),(101,151),(102,152),(103,153),(104,154),(105,155),(106,156),(107,157),(108,158),(109,159),(110,160),(111,141),(112,142),(113,143),(114,144),(115,145),(116,146),(117,147),(118,148),(119,149),(120,150)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,56),(2,55),(3,54),(4,53),(5,52),(6,51),(7,60),(8,59),(9,58),(10,57),(11,42),(12,41),(13,50),(14,49),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,77),(22,76),(23,75),(24,74),(25,73),(26,72),(27,71),(28,80),(29,79),(30,78),(31,67),(32,66),(33,65),(34,64),(35,63),(36,62),(37,61),(38,70),(39,69),(40,68),(81,132),(82,131),(83,140),(84,139),(85,138),(86,137),(87,136),(88,135),(89,134),(90,133),(91,122),(92,121),(93,130),(94,129),(95,128),(96,127),(97,126),(98,125),(99,124),(100,123),(101,157),(102,156),(103,155),(104,154),(105,153),(106,152),(107,151),(108,160),(109,159),(110,158),(111,147),(112,146),(113,145),(114,144),(115,143),(116,142),(117,141),(118,150),(119,149),(120,148)], [(1,157,17,147),(2,158,18,148),(3,159,19,149),(4,160,20,150),(5,151,11,141),(6,152,12,142),(7,153,13,143),(8,154,14,144),(9,155,15,145),(10,156,16,146),(21,121,31,131),(22,122,32,132),(23,123,33,133),(24,124,34,134),(25,125,35,135),(26,126,36,136),(27,127,37,137),(28,128,38,138),(29,129,39,139),(30,130,40,140),(41,111,51,101),(42,112,52,102),(43,113,53,103),(44,114,54,104),(45,115,55,105),(46,116,56,106),(47,117,57,107),(48,118,58,108),(49,119,59,109),(50,120,60,110),(61,81,71,91),(62,82,72,92),(63,83,73,93),(64,84,74,94),(65,85,75,95),(66,86,76,96),(67,87,77,97),(68,88,78,98),(69,89,79,99),(70,90,80,100)]])

104 conjugacy classes

class 1 2A···2O2P···2W4A···4H4I···4P5A5B10A···10AD20A···20AF
order12···22···24···44···45510···1020···20
size11···110···102···210···10222···22···2

104 irreducible representations

dim1111112222222
type++++++++++
imageC1C2C2C2C2C4D4D5D10D10C4×D5D20C5⋊D4
kernelC22×D10⋊C4C2×D10⋊C4C23×Dic5C23×C20D5×C24C23×D5C22×C10C23×C4C22×C4C24C23C23C23
# reps1121111682122161616

Matrix representation of C22×D10⋊C4 in GL5(𝔽41)

10000
01000
004000
000400
000040
,
400000
040000
004000
000400
000040
,
10000
01000
00100
000635
00061
,
10000
01000
00100
00001
00010
,
400000
032000
004000
0002335
000618

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,6,6,0,0,0,35,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[40,0,0,0,0,0,32,0,0,0,0,0,40,0,0,0,0,0,23,6,0,0,0,35,18] >;

C22×D10⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times D_{10}\rtimes C_4
% in TeX

G:=Group("C2^2xD10:C4");
// GroupNames label

G:=SmallGroup(320,1459);
// by ID

G=gap.SmallGroup(320,1459);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,1123,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^10=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^5*d>;
// generators/relations

׿
×
𝔽